Follow the latest progress of the Sphere project.

February 20, 2020

The deployment of the sphere

Several panels of the sphere will be able to deploy to perform different functions: photographing, measuring, analyzing and communicating.

February 19, 2020

Propulsion - acceleration and directional

A multi-directional hydrogen drive is planned. The sphere will automatically reposition according to what the various sensors reveal on the hull. In order to better photograph, analyze and take as much information as possible.

February 18, 2020

Panels of the sphere - Solar energy and superconductivity

The outer panels of the sphere will be photovoltaic panels.
We hope to expand the limits of this technology through superconductivity. Extend the wavelengths absorbed by cells by placing them on several layers, and by combining new optical technologies (such as polarization). This will multiply energy sources and make them more efficient thanks to superconductivity.

Generating a magnetic field with superconductivity will protect the sphere from a number of radiation. Associated with an optical technology, the protections will be all the more effective. The magnetic field will also be adjusted according to the sensors that will be on the hull, in order to provide the best protection according to the danger encountered.


February 12, 2020

The structure of the sphere

The shell of the sphere, will be composed of multilayers made of different composites: carbon fiber, fiberglass, titanium fiber, insulation and a multitude of other layers of materials to perform the different functions. Such as magnetism, the heat shield, an energy generator. The shell of the sphere will be loaded with sensors and adapted to superconductivity and normal conductivity.

The sphere’s frame will be made of laminated titanium. An expensive and complex process but which has many advantages, both in terms of mechanical strength and the possibility of interposing different other elements that this process allows in order to make it as adaptable as possible to the technologies that will be used such as superconductivity.

We remind you that this project is collaborative, so we are open to arguments that you can bring.

February 5, 2020

Superconductivity in the sphere

Superconductivity is a technology on which we bet to advance and advance the technological limits but also the limits of our minds, this is why this project is collaborative. We want to link superconductivity to various functions of the sphere. SSD hard drives, propulsion, sensors, solar panels, fuel cell, artificial intelligence driving the sphere and many other tracks.
The possibilities of superconductivity in this context have yet to be explored, and we will get down to it. Always keeping in mind to adapt this existing technology to other existing ones as well.

Cold conductivity - heat exchange

To obtain the quantum state of the materials of superconductivity in the space conditions as often as possible, it will be necessary to control at best all the heat exchanges which will take place.
The elements allowing the control of these parameters can be done by different means, thermal insulation, magnetic fields, controlled movement or even by chemistry (liquid nitrogen for example). Mastering these aspects is likely to be one of the biggest challenges. Every idea is welcomed. And remember what Forrest Gump said "only stupid stupidity"

The double circuits

There is no guarantee that we will meet the conditions for superconductivity for the hundreds of years of travel of the sphere, so it would be prudent to provide a means of operation in normal conductivity. For this it is necessary to develop circuits and conductors that can operate in the 2 modes. It will be a technological innovation, associated with a switch that will switch from one to the other depending on the temperature.
Numbers of parameters remain to be defined, numbers of tests which remain to be carried out. But the knowledge base on which we are going to rely exists. We just need open minds but also closed minds.


January 2020

What is superconductivity?

Superconductivity was discovered in 1911 by the Dutch physicist Heike Kamerlingh Onnes, who noted that at a temperature below 4.2 K (-268.8 ° C), mercury no longer exhibited any electrical resistance.
What characterizes more fundamentally a superconductor is its capacity to exclude the lines of magnetic field: if one immerses a superconductive object in a magnetic field, a surface current appears which produces a magnetic counter-field such that the total magnetic field is null at l inside the object. It was in 1939 that W. Meissner and R. Ochsenfeld observed this effect (called the Meissner effect) on lead. It is on the Meissner effect that magnetic levitation is based.
Find out more: click HERE.

What is it exactly:

Simply put, superconductivity is a state of matter with zero resistance to the passage of electricity. Knowing that the best conductors in the world, whether copper or optical fiber, have a certain resistance to the passage of electricity which generates considerable losses and a very low efficiency compared to a superconductor.
You can learn more in the video HERE.

Conditions for using superconductivity

There are two conditions for the use of superconductivity that must be met. The conductors must be made of materials capable of reaching the state of quantum matter related to superconductivity and these same conductors must bathe in an environment at a temperature allowing to reach this state of matter.
Some of these potentially superconductive materials must be subjected to pressure.

The temperature in space

The temperature in the interstellar vacuum can reach -272 ° C. In space, the face of a satellite in Earth orbit exposed to the Sun without protection (or that of an astronaut's spacesuit) can potentially go up to +150 ° C, while that in the shade will go down to -120 ° C since, unlike the beach on Earth, there is no ambient air. For information, the average night temperature on Mars is -140 ° C.

The disadvantages of superconductivity

Superconductivity has few drawbacks, but they are serious:
Today, in the current state of innovation, superconductivity is not something profitable, at least on earth. In fact, the temperatures necessary for a material to reach a state of quantum matter is very low, of the order of -140 ° C. A temperature which is extremely expensive to reach. This makes this parameter the main obstacle to this technology.
Fortunately for us, we believe that in the interstellar vacuum, the situation changes. This is why we will put superconductivity forward for this adventure.


Superconductivity has many advantages:

  • A return of up to 100% without loss
  • It can manage a magnetic field that can protect many elements such as radiation, energy particles or even solid objects.
  • It can make all technologies based on electricity more efficient and more precise (motorization, sensor, panels, antenna ...)

Be part of the project !

This project is collaborative, so we are open to arguments that you can bring.
Contact us now with your ideas, comments, and suggestions!

Facebook Group   |   Linkedin   |  

Copyright 2020 - Memory Space Corporation